Review of Machine Learning Techniques in Soft Tissue Biomechanics and Biomaterials.
Journal:
Cardiovascular engineering and technology
PMID:
38956008
Abstract
BACKGROUND AND OBJECTIVE: Advanced material models and material characterization of soft biological tissues play an essential role in pre-surgical planning for vascular surgeries and transcatheter interventions. Recent advances in heart valve engineering, medical device and patch design are built upon these models. Furthermore, understanding vascular growth and remodeling in native and tissue-engineered vascular biomaterials, as well as designing and testing drugs on soft tissue, are crucial aspects of predictive regenerative medicine. Traditional nonlinear optimization methods and finite element (FE) simulations have served as biomaterial characterization tools combined with soft tissue mechanics and tensile testing for decades. However, results obtained through nonlinear optimization methods are reliable only to a certain extent due to mathematical limitations, and FE simulations may require substantial computing time and resources, which might not be justified for patient-specific simulations. To a significant extent, machine learning (ML) techniques have gained increasing prominence in the field of soft tissue mechanics in recent years, offering notable advantages over conventional methods. This review article presents an in-depth examination of emerging ML algorithms utilized for estimating the mechanical characteristics of soft biological tissues and biomaterials. These algorithms are employed to analyze crucial properties such as stress-strain curves and pressure-volume loops. The focus of the review is on applications in cardiovascular engineering, and the fundamental mathematical basis of each approach is also discussed.