FastHPOCR: pragmatic, fast, and accurate concept recognition using the human phenotype ontology.

Journal: Bioinformatics (Oxford, England)
PMID:

Abstract

MOTIVATION: Human Phenotype Ontology (HPO)-based phenotype concept recognition (CR) underpins a faster and more effective mechanism to create patient phenotype profiles or to document novel phenotype-centred knowledge statements. While the increasing adoption of large language models (LLMs) for natural language understanding has led to several LLM-based solutions, we argue that their intrinsic resource-intensive nature is not suitable for realistic management of the phenotype CR lifecycle. Consequently, we propose to go back to the basics and adopt a dictionary-based approach that enables both an immediate refresh of the ontological concepts as well as efficient re-analysis of past data.

Authors

  • Tudor Groza
    The Garvan Institute of Medical Research, Sydney, Australia.
  • Dylan Gration
    Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Subiaco, WA 6008, Australia.
  • Gareth Baynam
    School of ITEE, The University of Queensland, St. Lucia, QLD 4072, Australia, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia, Institute for Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK, National Institute of Informatics, Hitotsubashi, Tokyo, Japan, Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK, LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal, Genetic Services of Western Australia, King Edward Memorial Hospital, WA 6008, Australia, School of Paediatrics and Child Health, University of Western Australia, WA 6008, Australia, Institute for Immunology and Infectious Diseases, Murdoch University, WA 6150, Australia, Office of Population Health, Public Health and Clinical Services Division, Western Australian Department of Health, WA 6004, Australia, Academic Department of Medical Genetics, Sydney Children's Hospitals Network (Westmead), NSW 2145, Australia, Discipline of Genetic Medicine, Sydney Medical School, The University of Sydney, NSW 2006, Australia, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany, Institute for Bioinformatics, Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany and Berlin Brandenburg Center for Regenerative Therapies, 13353 Berlin, Germany School of ITEE, The University of Queensland, St. Lucia, QLD 4072, Australia, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia, Institute for Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK, National Institute of Informatics, Hitotsubashi, Tokyo, Japan, Mouse Informa
  • Peter N Robinson
    The Jackson Laboratory for Genomic Medicine Farmington CT 06032 USA.