Machine learning-derived phenotypic trajectories of asthma and allergy in children and adolescents: protocol for a systematic review.
Journal:
BMJ open
PMID:
39214659
Abstract
INTRODUCTION: Development of asthma and allergies in childhood/adolescence commonly follows a sequential progression termed the 'atopic march'. Recent reports indicate, however, that these diseases are composed of multiple distinct phenotypes, with possibly differential trajectories. We aim to synthesise the current literature in the field of machine learning-based trajectory studies of asthma/allergies in children and adolescents, summarising the frequency, characteristics and associated risk factors and outcomes of identified trajectories and indicating potential directions for subsequent research in replicability, pathophysiology, risk stratification and personalised management. Furthermore, methodological approaches and quality will be critically appraised, highlighting trends, limitations and future perspectives.