Deep learning for autosegmentation for radiotherapy treatment planning: State-of-the-art and novel perspectives.

Journal: Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al]
Published Date:

Abstract

The rapid development of artificial intelligence (AI) has gained importance, with many tools already entering our daily lives. The medical field of radiation oncology is also subject to this development, with AI entering all steps of the patient journey. In this review article, we summarize contemporary AI techniques and explore the clinical applications of AI-based automated segmentation models in radiotherapy planning, focusing on delineation of organs at risk (OARs), the gross tumor volume (GTV), and the clinical target volume (CTV). Emphasizing the need for precise and individualized plans, we review various commercial and freeware segmentation tools and also state-of-the-art approaches. Through our own findings and based on the literature, we demonstrate improved efficiency and consistency as well as time savings in different clinical scenarios. Despite challenges in clinical implementation such as domain shifts, the potential benefits for personalized treatment planning are substantial. The integration of mathematical tumor growth models and AI-based tumor detection further enhances the possibilities for refining target volumes. As advancements continue, the prospect of one-stop-shop segmentation and radiotherapy planning represents an exciting frontier in radiotherapy, potentially enabling fast treatment with enhanced precision and individualization.

Authors

  • Ayhan Can Erdur
    Institute for Artificial Intelligence and Informatics in Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str., 81675, Munich, Bavaria, Germany. can.erdur@tum.de.
  • Daniel Rusche
    Department of Radiation Oncology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str., 81675, Munich, Bavaria, Germany.
  • Daniel Scholz
    Institute for Artificial Intelligence and Informatics in Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str., 81675, Munich, Bavaria, Germany.
  • Johannes Kiechle
    Department of Informatics, Technical University of Munich (TUM), Garching, Germany.
  • Stefan Fischer
    Institute of Telematics (ITM), University of Luebeck, 23562 Luebeck, Germany. fischer@itm.uni-luebeck.de.
  • Óscar Llorián-Salvador
    Department of Radiation Oncology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str., 81675, Munich, Bavaria, Germany.
  • Josef A Buchner
    Department of Radiation Oncology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str., 81675, Munich, Bavaria, Germany.
  • Mai Q Nguyen
    Department of Radiation Oncology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str., 81675, Munich, Bavaria, Germany.
  • Lucas Etzel
    Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany; German Consortium for Translational Cancer Research (DKTK), Partner Site Munich, Munich, Germany. Electronic address: lucas.etzel@tum.de.
  • Jonas Weidner
    Institute for Artificial Intelligence and Informatics in Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str., 81675, Munich, Bavaria, Germany.
  • Marie-Christin Metz
    From the Departments of Radiology (S.C.F., A.S.D., G.C.F., M.R.M.) and Neuroradiology (D.S., M.E.H., M.R., M.C.M., B.W., B.J.S., J.S.K.), Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675 Munich, Germany; Departments of Radiology (S.S.G., J.W.) and Neuroradiology (R.S., A.S.G.), University Hospital Munich (LMU), Munich, Germany; and German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany (B.W.).
  • Benedikt Wiestler
    Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Germany.
  • Julia Schnabel
  • Daniel Rueckert
    Biomedical Image Analysis (BioMedIA) Group, Department of Computing, Imperial College London, UK. Electronic address: d.rueckert@imperial.ac.uk.
  • Stephanie E Combs
    Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany; Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Germany.
  • Jan C Peeken
    Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Germany.