Deep-learning model accurately classifies multi-label lung ultrasound findings, enhancing diagnostic accuracy and inter-reader agreement.

Journal: Scientific reports
PMID:

Abstract

Despite the increasing use of lung ultrasound (LUS) in the evaluation of respiratory disease, operators' competence constrains its effectiveness. We developed a deep-learning (DL) model for multi-label classification using LUS and validated its performance and efficacy on inter-reader variability. We retrospectively collected LUS and labeled as normal, B-line, consolidation, and effusion from patients undergoing thoracentesis at a tertiary institution between January 2018 and January 2022. The development and internal testing involved 7580 images from January 2018 and December 2020, and the model's performance was validated on a temporally separated test set (n = 985 images collected after January 2021) and two external test sets (n = 319 and 54 images). Two radiologists interpreted LUS with and without DL assistance and compared diagnostic performance and agreement. The model demonstrated robust performance with AUCs: 0.93 (95% CI 0.92-0.94) for normal, 0.87 (95% CI 0.84-0.89) for B-line, 0.82 (95% CI 0.78-0.86) for consolidation, and 0.94 (95% CI 0.93-0.95) for effusion. The model improved reader accuracy for binary discrimination (normal vs. abnormal; reader 1: 87.5-95.6%, p = 0.004; reader 2: 95.0-97.5%, p = 0.19), and agreement (k = 0.73-0.83, p = 0.01). In conclusion, the DL-based model may assist interpretation, improving accuracy and overcoming operator competence limitations in LUS.

Authors

  • Daeeon Hong
    Department of Interdisciplinary Program in Bioengineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
  • Hyewon Choi
    Department of Radiology, Seoul National College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea (H.C., S.H.Y., S.J.P., C.M.P., J.H.L., H. Kim, E.J.H., S.J.Y., J.G.N., C.H.L., J.M.G.); CHESS Center, The First Hospital of Lanzhou University, Lanzhou, China (Q.X., J.L.); Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea (K.H.L.); Department of Internal Medicine, Incheon Medical Center, Incheon, Korea (J.Y.K.); Department of Radiology, Seoul Medical Center, Seoul, Korea (Y.K.L.); Department of Radiology, National Medical Center, Seoul, Korea (H. Ko); Department of Radiology, Myongji Hospital, Gyeonggi-do, Korea (K.H.K.); and Department of Radiology, Chonnam National University Hospital, Gwanju, Korea (Y.H.K.).
  • Wonju Hong
    Department of Radiology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
  • Yisak Kim
    From the Interdisciplinary Program in Bioengineering (Y.K., Y.S.) and Integrated Major in Innovative Medical Science (Y.K.), Seoul National University Graduate School, Seoul, Republic of Korea; Department of Radiology (Y.K.), Transdisciplinary Department of Medicine & Advanced Technology (Y.G.K., B.W.K., Y.S.), and Department of Internal Medicine (J.H.K., C.S.S.), Seoul National University Hospital, Seoul, Republic of Korea; Departments of Orthopaedic Surgery (J.W.P., Y.K.L.) and Internal Medicine (S.H.K.), Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beon-gil, Bundang gu, Seongnam, Republic of Korea; Departments of Medicine (Y.G.K.) and Internal Medicine (S.H.K., J.H.K., S.W.K., C.S.S.), Seoul National University College of Medicine, Seoul, Republic of Korea; and Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul, Republic of Korea (S.W.K.).
  • Tae Jung Kim
    Department of Neurology and Department of Critical Care Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
  • Jinwook Choi
    Dept. of Biomedical Engineering, College of Medicine, Seoul National University 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. Electronic address: jinchoi@snu.ac.kr.
  • Sang-Bae Ko
    Department of Neurology and Department of Critical Care Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. sangbai1378@gmail.com.
  • Chang Min Park
    Department of Radiology, Seoul National College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea (H.C., S.H.Y., S.J.P., C.M.P., J.H.L., H. Kim, E.J.H., S.J.Y., J.G.N., C.H.L., J.M.G.); CHESS Center, The First Hospital of Lanzhou University, Lanzhou, China (Q.X., J.L.); Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea (K.H.L.); Department of Internal Medicine, Incheon Medical Center, Incheon, Korea (J.Y.K.); Department of Radiology, Seoul Medical Center, Seoul, Korea (Y.K.L.); Department of Radiology, National Medical Center, Seoul, Korea (H. Ko); Department of Radiology, Myongji Hospital, Gyeonggi-do, Korea (K.H.K.); and Department of Radiology, Chonnam National University Hospital, Gwanju, Korea (Y.H.K.).