Prevention of adverse HIV treatment outcomes: machine learning to enable proactive support of people at risk of HIV care disengagement in Tanzania.
Journal:
BMJ open
PMID:
39317499
Abstract
OBJECTIVES: This study aimed to develop a machine learning (ML) model to predict disengagement from HIV care, high viral load or death among people living with HIV (PLHIV) with the goal of enabling proactive support interventions in Tanzania. The algorithm addressed common challenges when applying ML to electronic medical record (EMR) data: (1) imbalanced outcome distribution; (2) heterogeneity across multisite EMR data and (3) evolving virological suppression thresholds.