AIMC Topic: Tanzania

Clear Filters Showing 1 to 10 of 17 articles

Mucosal immune responses and intestinal microbiome associations in wild spotted hyenas (Crocuta crocuta).

Communications biology
Little is known about host-gut microbiome interactions within natural populations at the intestinal mucosa, the primary interface. We investigate associations between the intestinal microbiome and mucosal immune measures while controlling for host, s...

Banana Leaves Imagery Dataset.

Scientific data
In this work, we present a dataset of banana leaf imagery, both with and without diseases. The dataset consists of 11,767 images, categorized as follows: 3,339 healthy images, 3,496 images of leaves affected by Black Sigatoka and 4,932 images of leav...

Deciphering the climate-malaria nexus: A machine learning approach in rural southeastern Tanzania.

Public health
OBJECTIVES: Malaria remains a critical public health challenge, especially in regions like southeastern Tanzania. Understanding the intricate relationship between environmental factors and malaria incidence is essential for effective control and elim...

Prevention of adverse HIV treatment outcomes: machine learning to enable proactive support of people at risk of HIV care disengagement in Tanzania.

BMJ open
OBJECTIVES: This study aimed to develop a machine learning (ML) model to predict disengagement from HIV care, high viral load or death among people living with HIV (PLHIV) with the goal of enabling proactive support interventions in Tanzania. The alg...

Reagent-free detection of Plasmodium falciparum malaria infections in field-collected mosquitoes using mid-infrared spectroscopy and machine learning.

Scientific reports
Field-derived metrics are critical for effective control of malaria, particularly in sub-Saharan Africa where the disease kills over half a million people yearly. One key metric is entomological inoculation rate, a direct measure of transmission inte...

Machine learning for predicting cognitive deficits using auditory and demographic factors.

PloS one
IMPORTANCE: Predicting neurocognitive deficits using complex auditory assessments could change how cognitive dysfunction is identified, and monitored over time. Detecting cognitive impairment in people living with HIV (PLWH) is important for early in...

Leveraging AI and Machine Learning to Develop and Evaluate a Contextualized User-Friendly Cough Audio Classifier for Detecting Respiratory Diseases: Protocol for a Diagnostic Study in Rural Tanzania.

JMIR research protocols
BACKGROUND: Respiratory diseases, including active tuberculosis (TB), asthma, and chronic obstructive pulmonary disease (COPD), constitute substantial global health challenges, necessitating timely and accurate diagnosis for effective treatment and m...

Tanzania's and Germany's Digital Health Strategies and Their Consistency With the World Health Organization's Global Strategy on Digital Health 2020-2025: Comparative Policy Analysis.

Journal of medical Internet research
BACKGROUND: In recent years, the fast-paced adoption of digital health (DH) technologies has transformed health care delivery. However, this rapid evolution has also led to challenges such as uncoordinated development and information silos, impeding ...

Machine learning prediction of gestational age from metabolic screening markers resistant to ambient temperature transportation: Facilitating use of this technology in low resource settings of South Asia and East Africa.

Journal of global health
BACKGROUND: Knowledge of gestational age is critical for guiding preterm neonatal care. In the last decade, metabolic gestational dating approaches emerged in response to a global health need; because in most of the developing world, accurate antenat...