Automated deep learning segmentation of neuritic plaques and neurofibrillary tangles in Alzheimer disease brain sections using a proprietary software.

Journal: Journal of neuropathology and experimental neurology
PMID:

Abstract

Neuropathological diagnosis of Alzheimer disease (AD) relies on semiquantitative analysis of phosphorylated tau-positive neurofibrillary tangles (NFTs) and neuritic plaques (NPs), without consideration of lesion heterogeneity in individual cases. We developed a deep learning workflow for automated annotation and segmentation of NPs and NFTs from AT8-immunostained whole slide images (WSIs) of AD brain sections. Fifteen WSIs of frontal cortex from 4 biobanks with varying tissue quality, staining intensity, and scanning formats were analyzed. We established an artificial intelligence (AI)-driven iterative procedure to improve the generation of expert-validated annotation datasets for NPs and NFTs thereby increasing annotation quality by >50%. This strategy yielded an expert-validated annotation database with 5013 NPs and 5143 NFTs. We next trained two U-Net convolutional neural networks for detection and segmentation of NPs or NFTs, achieving high accuracy and consistency (mean Dice similarity coefficient: NPs, 0.77; NFTs, 0.81). The workflow showed high generalization performance across different cases. This study serves as a proof-of-concept for the utilization of proprietary image analysis software (Visiopharm) in the automated deep learning segmentation of NPs and NFTs, demonstrating that AI can significantly improve the annotation quality of complex neuropathological features and enable the creation of highly precise models for identifying these markers in AD brain sections.

Authors

  • Lea Ingrassia
    Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France.
  • Susana Boluda
    Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France.
  • Marie-Claude Potier
    Institut du Cerveau et de la Moelle épinière, ICM, Paris 75013, France.
  • Stéphane Haïk
    Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France.
  • Gabriel Jimenez
    Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France.
  • Anuradha Kar
    Laboratoire RDP, Université de Lyon 1, ENS-Lyon INRAE, INRIA, CNRS, UCBL, Lyon, France.
  • Daniel Racoceanu
    Sorbonne University, Paris, France; Pontifical Catholic University of Peru, Lima, Peru. Electronic address: daniraco@gmail.com.
  • Benoît Delatour
    Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France.
  • Lev Stimmer
    Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France.