PURPOSE: This study aimed to investigate a deep learning model to classify amyloid plaque deposition in the brain PET images of patients suspected of Alzheimer's disease.
Systemic amyloidosis involves the deposition of misfolded proteins in organs/tissues, leading to progressive organ dysfunction and failure. Congo red is the gold-standard chemical stain for visualizing amyloid deposits in tissue, showing birefringenc...
Accurate and scalable quantification of amyloid-β (Aβ) pathology is crucial for deeper disease phenotyping and furthering research in Alzheimer Disease (AD). This multidisciplinary study addresses the current limitations on neuropathology by leveragi...
AJNR. American journal of neuroradiology
Jun 4, 2020
BACKGROUND AND PURPOSE: Cortical amyloid quantification on PET by using the standardized uptake value ratio is valuable for research studies and clinical trials in Alzheimer disease. However, it is resource intensive, requiring co-registered MR imagi...
PURPOSE: This study sought to determine the feasibility of using Simultaneous Non-contrast Angiography and intraPlaque Hemorrhage (SNAP) to detect the lipid-rich/necrotic core (LRNC), and develop a machine learning based algorithm to segment plaque c...
BACKGROUND: Magnetic resonance imaging (MRI), combined with artificial intelligence techniques, has improved our understanding of brain structural change and enabled the estimation of brain age. Neurodegenerative disorders, such as Alzheimer's diseas...
Journal of neuropathology and experimental neurology
Sep 1, 2024
Neuropathological diagnosis of Alzheimer disease (AD) relies on semiquantitative analysis of phosphorylated tau-positive neurofibrillary tangles (NFTs) and neuritic plaques (NPs), without consideration of lesion heterogeneity in individual cases. We ...
In vivo imaging and accurate identification of amyloid-β (Aβ) plaque are crucial in Alzheimer's disease (AD) research. In this work, we propose to combine the coherent anti-Stokes Raman scattering (CARS) microscopy, a powerful detection technology fo...
Journal of neuropathology and experimental neurology
Mar 22, 2021
This study aimed to develop a deep learning-based image classification model that can differentiate tufted astrocytes (TA), astrocytic plaques (AP), and neuritic plaques (NP) based on images of tissue sections stained with phospho-tau immunohistochem...
BACKGROUND: Detailed pathology analysis and morphological quantification is tedious and prone to errors. Automatic image analysis can help to increase objectivity and reduce time. Here, we present the evaluation of the DeePathology STUDIO™ for automa...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.