The added value of including thyroid nodule features into large language models for automatic ACR TI-RADS classification based on ultrasound reports.

Journal: Japanese journal of radiology
PMID:

Abstract

OBJECTIVE: The ACR Thyroid Imaging, Reporting, and Data System (TI-RADS) uses a score based on ultrasound (US) imaging to stratify the risk of nodule malignancy and recommend appropriate follow-up. This study aims to analyze US reports and explore how Natural Language Processing (NLP) leveraging Transformers models can classify ACR TI-RADS from text reports using the description of thyroid nodule features.

Authors

  • Pilar López-Úbeda
    Universidad de Jaén, Jaén, Andalucía, Spain.
  • Teodoro Martín-Noguerol
    MRI Unit, Radiology Department, HT médica Carmelo Torres 2, Jaén 23007, Spain. Electronic address: t.martin.f@htime.org.
  • Alba Ruiz-Vinuesa
    Escuela de Ingeniería de Fuenlabrada, Universidad Rey Juan Carlos, Cam. del Molino, 5, 28942, Fuenlabrada, Madrid, Spain.
  • Antonio Luna
    MRI Unit, Radiology Department, Health Time, Jaén, Spain. Electronic address: aluna70@htime.org.