Deep Learning Algorithms for Breast Cancer Detection in a UK Screening Cohort: As Stand-alone Readers and Combined with Human Readers.

Journal: Radiology
Published Date:

Abstract

Background Deep learning (DL) algorithms have shown promising results in mammographic screening either compared to a single reader or, when deployed in conjunction with a human reader, compared with double reading. Purpose To externally validate the performance of three DL algorithms as mammographic screen readers in an independent UK data set. Materials and Methods Three commercial DL algorithms (DL-1, DL-2, and DL-3) were retrospectively investigated from January 2022 to June 2022 using consecutive full-field digital mammograms collected at two UK sites during 1 year (2017). Normal cases with 3-year follow-up and histopathologically proven cancer cases detected either at screening (that round or next) or within the 3-year interval were included. A preset specificity threshold equivalent to a single reader was applied. Performance was evaluated for stand-alone DL reading compared with single human reading, and for DL reading combined with human reading compared with double reading, using sensitivity and specificity as the primary metrics. < .025 was considered to indicate statistical significance for noninferiority testing. Results A total of 26 722 cases (median patient age, 59.0 years [IQR, 54.0-63.0 years]) with mammograms acquired using machines from two vendors were included. Cases included 332 screen-detected, 174 interval, and 254 next-round cancers. Two of three stand-alone DL algorithms achieved noninferior sensitivity (DL-1: 64.8%, < .001; DL-2: 56.7%, = .03; DL-3: 58.9%, < .001) compared with the single first reader (62.8%), and specificity was noninferior for DL-1 (92.8%; < .001) and DL-2 (96.8%; < .001) and superior for DL-3 (97.9%; < .001) compared with the single first reader (96.5%). Combining the DL algorithms with human readers achieved noninferior sensitivity (67.0%, 65.6%, and 65.4% for DL-1, DL-2, and DL-3, respectively; < .001 for all) compared with double reading (67.4%), and superior specificity (97.4%, 97.6%, and 97.6%; < .001 for all) compared with double reading (97.1%). Conclusion Use of stand-alone DL algorithms in combination with a human reader could maintain screening accuracy while reducing workload. Published under a CC BY 4.0 license.

Authors

  • Sarah E Hickman
    From the Department of Radiology (S.E.H., R.W., G.C.B., J.W.M., F.J.G.) and Department of Medicine (E.P.V.L., Y.R.I., C.M.L.), University of Cambridge School of Clinical Medicine, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, England; Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, England (R.W., F.J.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (R.W.); Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, England (A.I.A.R.); and Norwich Medical School, University of East Anglia, Norwich, England (J.W.M.).
  • Nicholas R Payne
    From the Department of Radiology, University of Cambridge School of Clinical Medicine, Box 218, Level 5, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK (S.E.H., N.R.P., Y.H., A.N.P., M.N., F.J.G.); University of Cambridge School of Clinical Medicine, Cambridge, UK (M.I.A, A.S.); Department of Radiology, Barts Health NHS Trust, The Royal London Hospital, London, UK (S.E.H.); Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK (R.T.B., A.N.P., F.J.G.); EPSRC Cambridge Mathematics of Information in Healthcare Hub, University of Cambridge, Cambridge, UK (Y.H.); Peel & Schriek Consulting, London, UK (S.H.); Department of Radiology, Norfolk and Norwich University Hospital, Norwich, UK (B.K., A.J.); and University of East Anglia, Norwich Research Park, Norwich, UK (B.K.).
  • Richard T Black
    From the Department of Radiology, University of Cambridge School of Clinical Medicine, Box 218, Level 5, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK (S.E.H., N.R.P., Y.H., A.N.P., M.N., F.J.G.); University of Cambridge School of Clinical Medicine, Cambridge, UK (M.I.A, A.S.); Department of Radiology, Barts Health NHS Trust, The Royal London Hospital, London, UK (S.E.H.); Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK (R.T.B., A.N.P., F.J.G.); EPSRC Cambridge Mathematics of Information in Healthcare Hub, University of Cambridge, Cambridge, UK (Y.H.); Peel & Schriek Consulting, London, UK (S.H.); Department of Radiology, Norfolk and Norwich University Hospital, Norwich, UK (B.K., A.J.); and University of East Anglia, Norwich Research Park, Norwich, UK (B.K.).
  • Yuan Huang
    School of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China.
  • Andrew N Priest
    Department of Radiology, NIHR Cambridge Biomedical Resource Centre, Cambridge University Hospital, Cambridge, UK.
  • Sue Hudson
    From the Department of Radiology, University of Cambridge School of Clinical Medicine, Box 218, Level 5, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK (S.E.H., N.R.P., Y.H., A.N.P., M.N., F.J.G.); University of Cambridge School of Clinical Medicine, Cambridge, UK (M.I.A, A.S.); Department of Radiology, Barts Health NHS Trust, The Royal London Hospital, London, UK (S.E.H.); Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK (R.T.B., A.N.P., F.J.G.); EPSRC Cambridge Mathematics of Information in Healthcare Hub, University of Cambridge, Cambridge, UK (Y.H.); Peel & Schriek Consulting, London, UK (S.H.); Department of Radiology, Norfolk and Norwich University Hospital, Norwich, UK (B.K., A.J.); and University of East Anglia, Norwich Research Park, Norwich, UK (B.K.).
  • Bahman Kasmai
    From the Department of Radiology, University of Cambridge School of Clinical Medicine, Box 218, Level 5, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK (S.E.H., N.R.P., Y.H., A.N.P., M.N., F.J.G.); University of Cambridge School of Clinical Medicine, Cambridge, UK (M.I.A, A.S.); Department of Radiology, Barts Health NHS Trust, The Royal London Hospital, London, UK (S.E.H.); Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK (R.T.B., A.N.P., F.J.G.); EPSRC Cambridge Mathematics of Information in Healthcare Hub, University of Cambridge, Cambridge, UK (Y.H.); Peel & Schriek Consulting, London, UK (S.H.); Department of Radiology, Norfolk and Norwich University Hospital, Norwich, UK (B.K., A.J.); and University of East Anglia, Norwich Research Park, Norwich, UK (B.K.).
  • Arne Juette
    Nolfolk and Norwich University Hospital Foundation Trust, Norwich, UK.
  • Muzna Nanaa
    From the Department of Radiology, University of Cambridge School of Clinical Medicine, Box 218, Level 5, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK (S.E.H., N.R.P., Y.H., A.N.P., M.N., F.J.G.); University of Cambridge School of Clinical Medicine, Cambridge, UK (M.I.A, A.S.); Department of Radiology, Barts Health NHS Trust, The Royal London Hospital, London, UK (S.E.H.); Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK (R.T.B., A.N.P., F.J.G.); EPSRC Cambridge Mathematics of Information in Healthcare Hub, University of Cambridge, Cambridge, UK (Y.H.); Peel & Schriek Consulting, London, UK (S.H.); Department of Radiology, Norfolk and Norwich University Hospital, Norwich, UK (B.K., A.J.); and University of East Anglia, Norwich Research Park, Norwich, UK (B.K.).
  • Fiona J Gilbert
    Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; NIHR Cambridge Biomedical Research Center, Cambridge, United Kingdom.