HarDNet-based deep learning model for osteoporosis screening and bone mineral density inference from hand radiographs.
Journal:
Bone
PMID:
39500404
Abstract
PURPOSE: Osteoporosis, affecting over 200 million individuals, often remains unrecognized and untreated, increasing the risk of fractures in older adults. Osteoporosis is typically diagnosed with bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA). This study aims to develop DeepDXA-Hand, a deep learning model using the efficient CNN-based deep learning architecture, for opportunistic osteoporosis screening from hand radiographs.