AIMC Topic: Absorptiometry, Photon

Clear Filters Showing 1 to 10 of 81 articles

A prediction model of pediatric bone density from plain spine radiographs using deep learning.

Scientific reports
Osteoporosis, a bone disease characterized by decreased bone mineral density (BMD) resulting in decreased mechanical strength and an increased fracture risk, remains poorly understood in children. Herein, we developed/validated a deep learning-based ...

Predictive modelling of knee osteoporosis.

BMC research notes
OBJECTIVE: The objective of this research was to develop a machine learning-based predictive model for osteoporosis screening using demographic and clinical data, including T-scores derived from calcaneus Quantitative Ultrasound (QUS). The study aime...

Using statistical modelling and machine learning in detecting bone properties: A systematic review protocol.

PloS one
INTRODUCTION: Osteoporosis, a common condition characterised by decreased bone mass and microarchitectural deterioration, leading to increased fracture risk, is a significant health concern. Traditional diagnostic methods, such as Dual-energy X-ray A...

Deep learning opportunistic screening for osteoporosis and osteopenia using radiographs of the foot or ankle - A pilot study.

European journal of radiology
BACKGROUND: The gold standard method for diagnosing low bone mineral density (BMD) is using dual-energy X-ray absorptiometry (DXA) however, most patients with low BMD are often not screened. We aimed to create a deep learning (DL) model to screen for...

A novel hybrid deep learning framework based on biplanar X-ray radiography images for bone density prediction and classification.

Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA
UNLABELLED: This study utilized deep learning for bone mineral density (BMD) prediction and classification using biplanar X-ray radiography (BPX) images from Huashan Hospital Medical Checkup Center. Results showed high accuracy and strong correlation...

Bonevoyage: Navigating the depths of osteoporosis detection with a dual-core ensemble of cascaded ShuffleNet and neural networks.

Journal of X-ray science and technology
BACKGROUND: Osteoporosis (OP) is a condition that significantly decreases bone density and strength, often remaining undetected until the occurrence of a fracture. Timely identification of OP is essential for preventing fractures, reducing morbidity,...

Application of Machine Learning to Osteoporosis and Osteopenia Screening Using Hand Radiographs.

The Journal of hand surgery
PURPOSE: Fragility fractures associated with osteoporosis and osteopenia are a common cause of morbidity and mortality. Current methods of diagnosing low bone mineral density require specialized dual x-ray absorptiometry (DXA) scans. Plain hand radio...

HarDNet-based deep learning model for osteoporosis screening and bone mineral density inference from hand radiographs.

Bone
PURPOSE: Osteoporosis, affecting over 200 million individuals, often remains unrecognized and untreated, increasing the risk of fractures in older adults. Osteoporosis is typically diagnosed with bone mineral density (BMD) measured by dual-energy X-r...

An explainable machine learning estimated biological age based on morphological parameters of the spine.

GeroScience
Accurately estimating biological age is beneficial for measuring aging and predicting risk. It is widely accepted that the prevalence of spine compression increases significantly with age. However, biological age based on vertebral morphological data...

Current status and dilemmas of osteoporosis screening tools: A narrative review.

Clinical nutrition ESPEN
OBJECTIVE: This review aims to explore the strengths and dilemmas of existing osteoporosis screening tools and suggest possible ways of optimization, in addition to exploring the potential of AI-integrated X-ray imaging in osteoporosis screening, esp...