Machine learning-based analysis of programmed cell death types and key genes in intervertebral disc degeneration.

Journal: Apoptosis : an international journal on programmed cell death
PMID:

Abstract

Intervertebral disc degeneration (IVDD) is intricately associated with various forms of programmed cell death (PCD). Identifying key PCD types and associated genes is essential for understanding the molecular mechanisms underlying IVDD and discovering potential therapeutic targets. This study aimed to elucidate core PCD types, related genes, and potential drug interactions in IVDD using comprehensive bioinformatic and experimental approaches. Using datasets GSE167199, GSE176205, GSE34095, GSE56081, and GSE70362, relevant gene expression and clinical data were analyzed. Differential expression gene (DEG) analysis identified upregulated genes linked to 15 PCD types. Gene Set Variation Analysis (GSVA) was employed to pinpoint key PCD types contributing to disc degeneration. Core genes were identified through machine learning techniques, while immune infiltration and single-cell analysis helped identify apoptosis-related cell types. Molecular docking, along with in vivo and in vitro experiments using a murine IVDD model, validated potential drug interactions. The results identified apoptosis, autophagy, ferroptosis, and necroptosis as key PCD types in IVDD. A gene module associated with apoptosis showed a strong correlation with the severity of disc degeneration, revealing 34 central genes in the gene network. Drug screening identified Glibenclamide as effectively interacting with PDCD6 and UBE2K. Subsequent in vitro and in vivo experiments demonstrated that Glibenclamide reduced apoptosis and delayed disc degeneration progression. This study provides a comprehensive bioinformatics analysis of PCD in IVDD, identifying four primary PCD types contributing to the disease's progression. The findings offer novel insights into the molecular pathology of disc degeneration and suggest promising therapeutic strategies for future treatment development.

Authors

  • Yigang Lv
    Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China.
  • Jiawei Du
    Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China.
  • Haoning Xiong
    Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China.
  • Lei Feng
    National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
  • Di Zhang
    College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
  • Hengxing Zhou
    Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China. Electronic address: zhouhengxing@sdu.edu.cn.
  • Shiqing Feng
    Second Hospital of Shandong University, Jinan, China shiqingfeng@sdu.edu.cn.