Automated deep learning segmentation of cardiac inflammatory FDG PET.
Journal:
Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology
PMID:
39368659
Abstract
BACKGROUND: Fluorodeoxyglucose positron emission tomography (FDG PET) with suppression of myocardial glucose utilization plays a pivotal role in diagnosing cardiac sarcoidosis. Reorientation of images to match perfusion datasets and myocardial segmentation enables consistent image scaling and quantification. However, such manual tasks are cumbersome. We developed a 3D U-Net deep-learning (DL) algorithm for automated myocardial segmentation in cardiac sarcoidosis FDG PET.