mGNN-bw: Multi-Scale Graph Neural Network Based on Biased Random Walk Path Aggregation for ASD Diagnosis.

Journal: IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
PMID:

Abstract

In recent years, computationally assisted diagnosis for classifying autism spectrum disorder (ASD) and typically developing (TD) individuals based on neuroimaging data, such as functional magnetic resonance imaging (fMRI), has garnered significant attention. Studies have shown that long-range functional connectivity patterns in ASD patients exhibit significant abnormalities, and individual brain networks display considerable heterogeneity. However, current graph neural networks (GNNs) used in ASD research have failed to adequately capture long-range connectivity and have overlooked individual differences. To address these limitations, this study proposes a novel multi-scale graph neural network based on biased random walks (mGNN-bw). The model introduces a co-optimization strategy between sub-models and the main model, leveraging node pooling scores from sub-models to guide biased random walks, effectively capturing long-range connectivity. By constructing high-order brain networks through path encoding and aggregation, and integrating them with low-order brain networks based on Pearson correlation, the model achieves a robust multi-scale feature representation. Experimental results on the publicly available ABIDE I dataset demonstrate the superior performance of our approach, achieving accuracy rates of 74.8% and 73.2% using CC200 and AAL atlases, respectively, outperforming existing methods. Additionally, the model identifies key ASD-associated brain regions, including the frontal lobe, insula, cingulate, and calcarine, supported by existing research. The proposed method significantly contributes to the clinical diagnosis of ASD.

Authors

  • Wenqiu Pan
  • Guang Ling
    School of Science, Wuhan University of Technology, Wuhan 430070, China.
  • Feng Liu
    Department of Vascular and Endovascular Surgery, The First Medical Center of Chinese PLA General Hospital, 100853 Beijing, China.