SeLa-MIL: Developing an instance-level classifier via weakly-supervised self-training for whole slide image classification.
Journal:
Computer methods and programs in biomedicine
Published Date:
Jan 27, 2025
Abstract
BACKGROUND AND OBJECTIVE: Pathology image classification is crucial in clinical cancer diagnosis and computer-aided diagnosis. Whole Slide Image (WSI) classification is often framed as a multiple instance learning (MIL) problem due to the high cost of detailed patch-level annotations. Existing MIL methods primarily focus on bag-level classification, often overlooking critical instance-level information, which results in suboptimal outcomes. This paper proposes a novel semi-supervised learning approach, SeLa-MIL, which leverages both labeled and unlabeled instances to improve instance and bag classification, particularly in hard positive instances near the decision boundary.