Can we rely on machine learning algorithms as a trustworthy predictor for recurrence in high-grade glioma? A systematic review and meta-analysis.
Journal:
Clinical neurology and neurosurgery
PMID:
39884144
Abstract
Early prediction of recurrence in high-grade glioma (HGG) is critical due to its aggressive nature and poor prognosis. Distinguishing true recurrence from treatment-related changes, such as radionecrosis, is a major diagnostic challenge. Machine learning (ML) offers a novel approach, leveraging advanced algorithms to analyze complex imaging data with high precision. A comprehensive search of PubMed, Embase, Scopus, Web of Science, and Google Scholar identified eligible studies. The sensitivity, specificity, accuracy, precision, F1 score, and the (area under the curve) AUC items were extracted from the included studies. After screening 1077 records, seven studies met the eligibility criteria for the systematic review, of which five were included in the meta-analysis. ML algorithm, particularly Support Vector Machines (SVM), demonstrated promising performance. A meta-analysis of five studies revealed a pooled sensitivity of 0.95 (95% CI: 0.84-0.99) and specificity of 0.80 (95% CI: 0.69-0.88). Additionally, the positive diagnostic likelihood ratio (DLR) was 4.75 (95% CI: 2.91-7.76), the negative DLR was 0.06 (95% CI: 0.02-0.21), and the diagnostic odds ratio was 80.97 (95% CI: 17.5-374.61). The diagnostic score was calculated as 4.39 (95% CI: 2.86-5.93), and the AUC was 0.86 (95% CI: 0.83-0.89). Subgroup analyses showed SVM-based models with higher sensitivity (0.98 vs. 0.87) and specificity (0.82 vs. 0.77) than non-SVM (p = 0.13). Comparing glioblastoma and Grade 3 tumors, sensitivities were 94 % vs. 97 %, and specificities were 79 % vs. 83 %, with no significant heterogeneity. These findings suggest that ML models, particularly SVM, offer promising diagnostic performance in distinguishing true tumor recurrence from treatment-related changes.