Artificial intelligence for diagnosis and predictive biomarkers in Non-Small cell lung cancer Patients: New promises but also new hurdles for the pathologist.

Journal: Lung cancer (Amsterdam, Netherlands)
PMID:

Abstract

The rapid development of artificial intelligence (AI) based tools in pathology laboratories has brought forward unlimited opportunities for pathologists. Promising AI applications used for accomplishing diagnostic, prognostic and predictive tasks are being developed at a high pace. This is notably true in thoracic oncology, given the significant and rapid therapeutic progress made recently for lung cancer patients. Advances have been based on drugs targeting molecular alterations, immunotherapies, and, more recently antibody-drug conjugates which are soon to be introduced. For over a decade, many proof-of-concept studies have explored the use of AI algorithms in thoracic oncology to improve lung cancer patient care. However, despite the enthusiasm in this domain, the set-up and use of AI algorithms in daily practice of thoracic pathologists has not been operative until now, due to several constraints. The purpose of this review is to describe the potential but also the current barriers of AI applications in routine thoracic pathology for non-small cell lung cancer patient care and to suggest practical solutions for rapid future implementation.

Authors

  • Paul Hofman
    Laboratoire de pathologie clinique et expérimentale/biobanque (BB 0033-00025), Fédération hospitalo-universitaire OncoAge, CHU de Nice, université Côte-d'Azur, 30, voie Romaine, 06000 Nice, France; Équipe 4, CNRS UMR7284, Inserm U1081, faculté de médecine, institut de recherche sur le cancer et le vieillissement de Nice (Ircan), 28, avenue de Valombrose, 06107 Nice, France.
  • Iordanis Ourailidis
    Institute of Pathology Heidelberg, University Hospital Heidelberg, In Neuenheimer Feld 224 69120 Heidelberg, Germany.
  • Eva Romanovsky
    Institute of Pathology Heidelberg, University Hospital Heidelberg, In Neuenheimer Feld 224 69120 Heidelberg, Germany.
  • Marius Ilié
    Laboratoire de pathologie clinique et expérimentale/biobanque (BB 0033-00025), Fédération hospitalo-universitaire OncoAge, CHU de Nice, université Côte-d'Azur, 30, voie Romaine, 06000 Nice, France; Équipe 4, CNRS UMR7284, Inserm U1081, faculté de médecine, institut de recherche sur le cancer et le vieillissement de Nice (Ircan), 28, avenue de Valombrose, 06107 Nice, France. Electronic address: ilie.m@chu-nice.fr.
  • Jan Budczies
    Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, Heidelberg, 69120, Germany; German Cancer Consortium (DKTK), Partner Site Heidelberg, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
  • Albrecht Stenzinger
    From the Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany (P.S., J.P.R., P.K., H.P.S., D.B.); Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany (S.K., K.H.M.H.); Department of Urology, University of Heidelberg Medical Center, Heidelberg, Germany (J.P.R., M.H.); Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany (M.W.); Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany (P.K.); Junior Group Medical Imaging and Radiology-Cancer Prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany (S.B.); Division of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg, Germany (T.A.K.); Institute of Pathology, University of Heidelberg Medical Center, Heidelberg, Germany (A.S.); and German Cancer Consortium (DKTK), Heidelberg, Germany (H.P.S., K.H.M.H., D.B.).