PeptideForest: Semisupervised Machine Learning Integrating Multiple Search Engines for Peptide Identification.
Journal:
Journal of proteome research
PMID:
39840643
Abstract
The first step in bottom-up proteomics is the assignment of measured fragmentation mass spectra to peptide sequences, also known as peptide spectrum matches. In recent years novel algorithms have pushed the assignment to new heights; unfortunately, different algorithms come with different strengths and weaknesses and choosing the appropriate algorithm poses a challenge for the user. Here we introduce PeptideForest, a semisupervised machine learning approach that integrates the assignments of multiple algorithms to train a random forest classifier to alleviate that issue. Additionally, PeptideForest increases the number of peptide-to-spectrum matches that exhibit a q-value lower than 1% by 25.2 ± 1.6% compared to MS-GF+ data on samples containing mixed HEK and proteomes. However, an increase in quantity does not necessarily reflect an increase in quality and this is why we devised a novel approach to determine the quality of the assigned spectra through TMT quantification of samples with known ground truths. Thereby, we could show that the increase in PSMs below 1% q-value does not come with a decrease in quantification quality and as such PeptideForest offers a possibility to gain deeper insights into bottom-up proteomics. PeptideForest has been integrated into our pipeline framework Ursgal and can therefore be combined with a wide array of algorithms.