Automated stenosis estimation of coronary angiographies using end-to-end learning.
Journal:
The international journal of cardiovascular imaging
PMID:
39789341
Abstract
The initial evaluation of stenosis during coronary angiography is typically performed by visual assessment. Visual assessment has limited accuracy compared to fractional flow reserve and quantitative coronary angiography, which are more time-consuming and costly. Applying deep learning might yield a faster and more accurate stenosis assessment. We developed a deep learning model to classify cine loops into left or right coronary artery (LCA/RCA) or "other". Data were obtained by manual annotation. Using these classifications, cine loops before revascularization were identified and curated automatically. Separate deep learning models for LCA and RCA were developed to estimate stenosis using these identified cine loops. From a cohort of 19,414 patients and 332,582 cine loops, we identified cine loops for 13,480 patients for model development and 5056 for internal testing. External testing was conducted using automated identified cine loops from 608 patients. For identification of significant stenosis (visual assessment of diameter stenosis > 70%), our model obtained a receiver operator characteristic (ROC) area under the curve (ROC-AUC) of 0.903 (95% CI: 0.900-0.906) on the internal test. The performance was evaluated on the external test set against visual assessment, 3D quantitative coronary angiography, and fractional flow reserve (≤ 0.80), obtaining ROC AUC values of 0.833 (95% CI: 0.814-0.852), 0.798 (95% CI: 0.741-0.842), and 0.780 (95% CI: 0.743-0.817), respectively. The deep-learning-based stenosis estimation models showed promising results for predicting stenosis. Compared to previous work, our approach demonstrates performance increase, includes all 16 segments, does not exclude revascularized patients, is externally tested, and is simpler using fewer steps.
Authors
Keywords
Aged
Automation
Coronary Angiography
Coronary Artery Disease
Coronary Stenosis
Coronary Vessels
Deep Learning
Female
Fractional Flow Reserve, Myocardial
Humans
Male
Middle Aged
Predictive Value of Tests
Radiographic Image Interpretation, Computer-Assisted
Reproducibility of Results
Retrospective Studies
Severity of Illness Index