Artificial intelligence in gastrointestinal cancer research: Image learning advances and applications.
Journal:
Cancer letters
PMID:
39952597
Abstract
With the rapid advancement of artificial intelligence (AI) technologies, including deep learning, large language models, and neural networks, these methodologies are increasingly being developed and integrated into cancer research. Gastrointestinal tumors are characterized by complexity and heterogeneity, posing significant challenges for early detection, diagnostic accuracy, and the development of personalized treatment strategies. The application of AI in digestive oncology has demonstrated its transformative potential. AI not only alleviates the diagnostic burden on clinicians, but it improves tumor screening sensitivity, specificity, and accuracy. Additionally, AI aids the detection of biomarkers such as microsatellite instability and mismatch repair, supports intraoperative assessments of tumor invasion depth, predicts treatment responses, and facilitates the design of personalized treatment plans to potentially significantly enhance patient outcomes. Moreover, the integration of AI with multiomics analyses and imaging technologies has led to substantial advancements in foundational research on the tumor microenvironment. This review highlights the progress of AI in gastrointestinal oncology over the past 5 years with focus on early tumor screening, diagnosis, molecular marker identification, treatment planning, and prognosis predictions. We also explored the potential of AI to enhance medical imaging analyses to aid tumor detection and characterization as well as its role in automating and refining histopathological assessments.