A deep ensemble learning framework for glioma segmentation and grading prediction.
Journal:
Scientific reports
PMID:
39910114
Abstract
The segmentation and risk grade prediction of gliomas based on preoperative multimodal magnetic resonance imaging (MRI) are crucial tasks in computer-aided diagnosis. Due to the significant heterogeneity between and within tumors, existing methods mainly rely on single-task approaches, overlooking the inherent correlation between segmentation and grading tasks. Furthermore, the limited availability of glioma grading data presents further challenges. To address these issues, we propose a deep-ensemble learning framework based on multimodal MRI and the U-Net model, which simultaneously performs glioma segmentation and risk grade prediction. We introduce asymmetric convolution and dual-domain attention in the encoder, fully integrating effective information from different modalities, enhancing the extraction of features from critical regions, and constructing a dual-branch decoder that combines spatial features and global semantic information for both segmentation and grading. In addition, we propose a weighted composite adaptive loss function to balance the optimization objectives of the two tasks. Our experimental results on the BraTS dataset demonstrate that our method outperforms state-of-the-art methods, yielding superior segmentation accuracy and precise risk grade prediction.