GraphDeep-hERG: Graph Neural Network PharmacoAnalytics for Assessing hERG-Related Cardiotoxicity.
Journal:
Pharmaceutical research
PMID:
40140128
Abstract
PURPOSE: The human Ether-a-go-go Related-Gene (hERG) encodes rectifying potassium channels that play a significant role during action potential repolarization of cardiomyocytes. Blockade of the hERG channel by off-target drugs can lead to long QT syndrome, significantly increasing the risk of proarrhythmic cardiotoxicity. Traditional hERG screening methods are effort-demanding and time-consuming. Thus, it is essential to develop computational methods to utilize the existing knowledge for faster and more accurate in silico screening. Although with wide use of deep learning/machine learning algorithms, existing computational models often rely on manually defined atomic features to represent atom nodes, which may overlook critical underlying information. Thus, we want to provide a new method to learn the atom representation automatically.