The human ether-a-go-go-related gene (hERG) encodes a tetrameric potassium channel called Kv11.1. This channel can be blocked by certain drugs, which leads to long QT syndrome, causing cardiotoxicity. This is a significant problem during drug develop...
In this review, we outline the current trends in the field of machine learning-driven classification studies related to ADME (absorption, distribution, metabolism and excretion) and toxicity endpoints from the past six years (2015-2021). The study fo...
Artificial intelligence (AI) models usually require large amounts of high-quality training data, which is in striking contrast to the situation of small and biased data faced by current drug discovery pipelines. The concept of federated learning has ...
The development of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) has been a critical in vitro advance in the study of patient-specific physiology, pathophysiology, and pharmacology. We designed a new deep learning multitask network ...
The human ether-à-go-go-related gene (hERG) encodes the Kv11.1 voltage-gated potassium ion (K) channel that conducts the rapidly activating delayed rectifier current (I) in cardiomyocytes to regulate the repolarization process. Some drugs, as blocker...
The cardiotoxic effects of various pollutants have been a growing concern in environmental and material science. These effects encompass arrhythmias, myocardial injury, cardiac insufficiency, and pericardial inflammation. Compounds such as organic so...
The human ether-a-go-go-related gene (hERG) potassium channel is pivotal in drug discovery due to its susceptibility to blockage by drug candidate molecules, which can cause severe cardiotoxic effects. Consequently, identifying and excluding potentia...
PURPOSE: The human Ether-a-go-go Related-Gene (hERG) encodes rectifying potassium channels that play a significant role during action potential repolarization of cardiomyocytes. Blockade of the hERG channel by off-target drugs can lead to long QT syn...