Heart failure risk stratification using artificial intelligence applied to electrocardiogram images: a multinational study.

Journal: European heart journal
PMID:

Abstract

BACKGROUND AND AIMS: Current heart failure (HF) risk stratification strategies require comprehensive clinical evaluation. In this study, artificial intelligence (AI) applied to electrocardiogram (ECG) images was examined as a strategy to predict HF risk.

Authors

  • Lovedeep S Dhingra
    Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
  • Arya Aminorroaya
    Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
  • Veer Sangha
    Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
  • Aline F Pedroso
    Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06510, USA.
  • Folkert W Asselbergs
  • Luisa C C Brant
    Faculdade de Medicina, Department of Internal Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Sandhi M Barreto
    Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Antonio Luiz P Ribeiro
    Hospital das ClĂ­nicas and Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190 - sala 533/Universidade Federal de Minas Gerais (UFMG), Belo Horizonte - MG, Brazil. Electronic address: tom@hc.ufmg.br.
  • Harlan M Krumholz
    Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
  • Evangelos K Oikonomou
    Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, UK.
  • Rohan Khera
    Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.