Research on noninvasive electrophysiologic imaging based on cardiac electrophysiology simulation and deep learning methods for the inverse problem.
Journal:
BMC cardiovascular disorders
PMID:
40295939
Abstract
BACKGROUND: The risk stratification and prognosis of cardiac arrhythmia depend on the individual condition of patients, while invasive diagnostic methods may be risky to patient health, and current non-invasive diagnostic methods are applicable to few disease types without sensitivity and specificity. Cardiac electrophysiologic imaging (ECGI) technology reflects cardiac activities accurately and non-invasively, which is of great significance for the diagnosis and treatment of cardiac diseases. This paper aims to provide a new solution for the realization of ECGI by combining simulation model and deep learning methods.