GRLGRN: graph representation-based learning to infer gene regulatory networks from single-cell RNA-seq data.

Journal: BMC bioinformatics
PMID:

Abstract

BACKGROUND: A gene regulatory network (GRN) is a graph-level representation that describes the regulatory relationships between transcription factors and target genes in cells. The reconstruction of GRNs can help investigate cellular dynamics, drug design, and metabolic systems, and the rapid development of single-cell RNA sequencing (scRNA-seq) technology provides important opportunities while posing significant challenges for reconstructing GRNs. A number of methods for inferring GRNs have been proposed in recent years based on traditional machine learning and deep learning algorithms. However, inferring the GRN from scRNA-seq data remains challenging owing to cellular heterogeneity, measurement noise, and data dropout.

Authors

  • Kai Wang
    Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China.
  • Yulong Li
    School of Software Engineering, Tongji University, Shanghai, China.
  • Fei Liu
    Department of Interventional Radiology, Qinghai Red Cross Hospital, Xining, Qinghai, China.
  • Xiaoli Luan
    Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
  • Xinglong Wang
    Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
  • Jingwen Zhou
    Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China. Electronic address: zhoujw1982@jiangnan.edu.cn.