Deep-Learning-Assisted Microfluidic Immunoassay via Smartphone-Based Imaging Transcoding System for On-Site and Multiplexed Biosensing.
Journal:
Nano letters
PMID:
40203242
Abstract
Point-of-care testing (POCT) with multiplexed capability, ultrahigh sensitivity, affordable smart devices, and user-friendly operation is critically needed for clinical diagnostics and food safety. This study presents a deep-learning-assisted microfluidic immunoassay platform that uses a smartphone-based imaging transcoding system, polystyrene microsphere-based encoding, and artificial-intelligence-assisted decoding. Microspheres of varying sizes act as multiprobes, with their quantities correlating to target concentrations after an immunoreaction and separation-filtration within the microfluidic chip. A smartphone with intelligent decoding software captures images of multiprobes from the chip and performs classification, counting, and concentration calculations. The "encoding-decoding" strategy and integrated microfluidic chip design allow these processes to be completed in simple steps, eliminating the need for additional immunomagnetic separation. As a proof of concept, this platform successfully detected multiple respiratory viruses and antibiotics in various real samples with high sensitivity within 30 min, demonstrating great potential as a smart, universal toolkit for next-generation POCT applications.