An ensemble-based 3D residual network for the classification of Alzheimer's disease.
Journal:
PloS one
Published Date:
Jun 11, 2025
Abstract
Alzheimer's disease (AD) is a common type of dementia, with mild cognitive impairment (MCI) being a key precursor. Early MCI diagnosis is crucial for slowing AD progression, but distinguishing MCI from normal controls (NC) is challenging due to subtle imaging differences. Furthermore, differentiating early MCI (EMCI) from late MCI (LMCI) is also important for interventions. This study proposes a deep learning-based approach using a weighted probability-based ensemble method to integrate results from three-dimensional residual networks (3D ResNet). (1) This study employs 3D ResNet-18, 3D ResNet-34, and 3D ResNet-50 architectures with the Convolutional Block Attention Module (CBAM). The attention mechanism enhances performance by helping the model focus on pertinent information. Data augmentation techniques are applied to address limited data and improve accuracy. (2) To overcome the limitation of the individual convolutional neural network (CNN), an ensemble learning method is adopted. The method assigns weights to each 3D CNN model based on prediction accuracy and integrates them to obtain the final result. Our method achieves accuracy of 94.87%, 92.31%, 95.49%, and 95.97% for MCI vs. NC, MCI vs. AD, EMCI vs. LMCI, and NC vs. EMCI vs. LMCI vs. AD, respectively. The results demonstrate the effectiveness of our method for AD diagnosis.