Automated Deep Learning Phenotyping of Tricuspid Regurgitation in Echocardiography.

Journal: JAMA cardiology
Published Date:

Abstract

IMPORTANCE: Accurate assessment of tricuspid regurgitation (TR) is necessary for identification and risk stratification.

Authors

  • Amey Vrudhula
    Icahn School of Medicine at Mount Sinai, New York (A.V.).
  • Milos Vukadinovic
    Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
  • Christiane Haeffele
    Division of Cardiology, Department of Medicine, Stanford University, Palo Alto, California.
  • Alan C Kwan
    Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA.
  • Daniel Berman
    Department of Imaging, Cedars-Sinai Medical Center, Cedars-Sinai Heart Institute, Los Angeles, California.
  • David Liang
  • Robert Siegel
    Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Susan Cheng
    Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA.
  • David Ouyang
    Division of Artificial Intelligence, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.