Antioxidant activity of Mentha piperita phenolics on arsenic induced oxidative stress, biochemical alterations, and cyto-genotoxicity in fish, Channa punctatus.
Journal:
Fish physiology and biochemistry
PMID:
40111585
Abstract
The study aims to investigate the synergistic antioxidant effects of the phenolics present in Mentha piperita (MP) against arsenic trioxide-induced oxidative stress, biochemical alteration, and cyto-genotoxicity in the fish, Channa punctatus. The phenolic composition of MP estimated by HPLC-PDA analysis reveals the presence of phenolics, viz., ascorbic acid (Rt = 2.763 min.), rutin (Rt = 12.597 min.), caffeic acid (Rt = 18.304 min.), quercetin (Rt = 26.731 min.), luteolin (Rt = 42.709 min.), and hesperetin (Rt = 49.525 min.). The experimental setup consists of four groups (G1-G4) with a density of 12 fish in each. The fishes in G1 served as the control group, whereas the fishes in G2 were exposed to 81.73 mg/L of AsO. Fish in group G3 were subjected to 8 mg/L MP, whereas those in group G4 were treated to 8 mg/L MP plus 81.73 mg/L AsO. The result showed a significantly (p < 0.05) increased GOT and GPT level, increased oxidative stress markers, SOD and CAT, and induction in cyto-genotoxic markers, viz., disintegrated nucleus (DN), microcyte (MC), echinocyte (EC), and nucleoplasmic bridges (NpBs). A significant (p < 0.05) decreased GSH level in the arsenic-exposed group for all exposure periods was observed. However, in G4, all parameters reduced significantly (p < 0.05) more than in G2. The results suggest that the phenolics present in MP are synergistically able to reduce arsenic-induced oxidative damages by improving antioxidant defence, thus improving fish health status.