Improved unsupervised 3D lung lesion detection and localization by fusing global and local features: Validation in 3D low-dose computed tomography.

Journal: Medical image analysis
Published Date:

Abstract

Unsupervised anomaly detection (UAD) is crucial in low-dose computed tomography (LDCT). Recent AI technologies, leveraging global features, have enabled effective UAD with minimal training data of normal patients. However, this approach, devoid of utilizing local features, exhibits vulnerability in detecting deep lesions within the lungs. In other words, while the conventional use of global features can achieve high specificity, it often comes with limited sensitivity. Developing a UAD AI model with high sensitivity is essential to prevent false negatives, especially in screening patients with diseases demonstrating high mortality rates. We have successfully pioneered a new LDCT UAD AI model that leverages local features, achieving a previously unattainable increase in sensitivity compared to global methods (17.5% improvement). Furthermore, by integrating this approach with conventional global-based techniques, we have successfully consolidated the advantages of each model - high sensitivity from the local model and high specificity from the global model - into a single, unified, trained model (17.6% and 33.5% improvement, respectively). Without the need for additional training, we anticipate achieving significant diagnostic efficacy in various LDCT applications, where both high sensitivity and specificity are essential, using our fixed model. Code is available at https://github.com/kskim-phd/Fusion-UADL.

Authors

  • Ju Hwan Lee
    Department of Medical Biotechnology, Dongguk University-Bio Medi Campus, (410-820) 32, Dongguk-ro, Ilsan Dong-gu, Goyang-si, Gyeonggi-do, South Korea.
  • Seong Je Oh
    Medical AI Research Center, Samsung Medical Center, Seoul, South Korea.
  • Kyungsu Kim
    Medical AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea. kskim.doc@gmail.com.
  • Chae Yeon Lim
    Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
  • Seung Hong Choi
    From the Graduate School of Medical Science and Engineering (K.H.K., S.H.P.) and Department of Bio and Brain Engineering (S.H.P.), Korea Advanced Institute of Science and Technology, Room 1002, CMS (E16) Building, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea (S.H.C.); Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.H.C.); and Center for Nanoparticle Research, Institute for Basic Science, Seoul, Republic of Korea (S.H.C.).
  • Myung Jin Chung
    From the Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea (Y.S., K.H., B.W.C.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (M.J.C.); Department of Radiology, University Medical Center Freiburg, Freiburg, Germany (E.K.); Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (S. Yune, M.K., S.D.); and Samsung Electronics, Suwon, Republic of Korea (H.K., S. Yang, D.J.L.).