Machine learning models for the differential diagnosis of vascular parkinsonism and Parkinson's disease using [(123)I]FP-CIT SPECT.

Journal: European journal of nuclear medicine and molecular imaging
Published Date:

Abstract

PURPOSE: The study's objective was to develop diagnostic predictive models using data from two commonly used [(123)I]FP-CIT SPECT assessment methods: region-of-interest (ROI) analysis and whole-brain voxel-based analysis.

Authors

  • I Huertas-Fernández
    Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n., 41013, Seville, Spain.
  • F J García-Gómez
  • D García-Solís
  • S Benítez-Rivero
  • V A Marín-Oyaga
  • S Jesús
  • M T Cáceres-Redondo
  • J A Lojo
  • J F Martín-Rodríguez
  • F Carrillo
  • P Mir