Automatic tissue characterization of air trapping in chest radiographs using deep neural networks.

Journal: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Published Date:

Abstract

Significant progress has been made in recent years for computer-aided diagnosis of abnormal pulmonary textures from computed tomography (CT) images. Similar initiatives in chest radiographs (CXR), the common modality for pulmonary diagnosis, are much less developed. CXR are fast, cost effective and low-radiation solution to diagnosis over CT. However, the subtlety of textures in CXR makes them hard to discern even by trained eye. We explore the performance of deep learning abnormal tissue characterization from CXR. Prior studies have used CT imaging to characterize air trapping in subjects with pulmonary disease; however, the use of CT in children is not recommended mainly due to concerns pertaining to radiation dosage. In this work, we present a stacked autoencoder (SAE) deep learning architecture for automated tissue characterization of air-trapping from CXR. To our best knowledge this is the first study applying deep learning framework for the specific problem on 51 CXRs, an F-score of ≈ 76.5% and a strong correlation with the expert visual scoring (R=0.93, p =<; 0.01) demonstrate the potential of the proposed method to characterization of air trapping.

Authors

  • Awais Mansoor
    Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Science Department, National Institutes of Health (NIH), Bethesda, MD 20892, United States.
  • Geovanny Perez
  • Gustavo Nino
  • Marius George Linguraru
    Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC 20010, USA; Departments of Radiology and Pediatrics, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA.