Complementary feature selection from alternative splicing events and gene expression for phenotype prediction.
Journal:
Bioinformatics (Oxford, England)
Published Date:
Sep 1, 2016
Abstract
MOTIVATION: A central task of bioinformatics is to develop sensitive and specific means of providing medical prognoses from biomarker patterns. Common methods to predict phenotypes in RNA-Seq datasets utilize machine learning algorithms trained via gene expression. Isoforms, however, generated from alternative splicing, may provide a novel and complementary set of transcripts for phenotype prediction. In contrast to gene expression, the number of isoforms increases significantly due to numerous alternative splicing patterns, resulting in a prioritization problem for many machine learning algorithms. This study identifies the empirically optimal methods of transcript quantification, feature engineering and filtering steps using phenotype prediction accuracy as a metric. At the same time, the complementary nature of gene and isoform data is analyzed and the feasibility of identifying isoforms as biomarker candidates is examined.