Stable feature selection based on the ensemble L -norm support vector machine for biomarker discovery.
Journal:
BMC genomics
Published Date:
Dec 22, 2016
Abstract
BACKGROUND: Lately, biomarker discovery has become one of the most significant research issues in the biomedical field. Owing to the presence of high-throughput technologies, genomic data, such as microarray data and RNA-seq, have become widely available. Many kinds of feature selection techniques have been applied to retrieve significant biomarkers from these kinds of data. However, they tend to be noisy with high-dimensional features and consist of a small number of samples; thus, conventional feature selection approaches might be problematic in terms of reproducibility.