Machine-Learning-Assisted Approach for Discovering Novel Inhibitors Targeting Bromodomain-Containing Protein 4.

Journal: Journal of chemical information and modeling
Published Date:

Abstract

Bromodomain-containing protein 4 (BRD4) is implicated in the pathogenesis of a number of different cancers, inflammatory diseases and heart failure. Much effort has been dedicated toward discovering novel scaffold BRD4 inhibitors (BRD4is) with different selectivity profiles and potential antiresistance properties. Structure-based drug design (SBDD) and virtual screening (VS) are the most frequently used approaches. Here, we demonstrate a novel, structure-based VS approach that uses machine-learning algorithms trained on the priori structure and activity knowledge to predict the likelihood that a compound is a BRD4i based on its binding pattern with BRD4. In addition to positive experimental data, such as X-ray structures of BRD4-ligand complexes and BRD4 inhibitory potencies, negative data such as false positives (FPs) identified from our earlier ligand screening results were incorporated into our knowledge base. We used the resulting data to train a machine-learning model named BRD4LGR to predict the BRD4i-likeness of a compound. BRD4LGR achieved a 20-30% higher AUC-ROC than that of Glide using the same test set. When conducting in vitro experiments against a library of previously untested, commercially available organic compounds, the second round of VS using BRD4LGR generated 15 new BRD4is. Moreover, inverting the machine-learning model provided easy access to structure-activity relationship (SAR) interpretation for hit-to-lead optimization.

Authors

  • Jing Xing
    Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.
  • Wenchao Lu
    Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.
  • Rongfeng Liu
    Shanghai ChemPartner Co., LTD. , #5 Building, 998 Halei Road, Shanghai 201203, China.
  • Yulan Wang
    Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.
  • Yiqian Xie
    Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.
  • Hao Zhang
    College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
  • Zhe Shi
    Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
  • Hao Jiang
    Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.
  • Yu-Chih Liu
    Shanghai ChemPartner Co., LTD. , #5 Building, 998 Halei Road, Shanghai 201203, China.
  • Kaixian Chen
    Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
  • Hualiang Jiang
    Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China ; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
  • Cheng Luo
    Department of Cardiology, Liuzhou Workers' Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China.
  • Mingyue Zheng
    School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang Province, China.