How does wearable robotic exoskeleton affect overground walking performance measured with the 10-m and six-minute walk tests after a basic locomotor training in healthy individuals?

Journal: Gait & posture
PMID:

Abstract

It is still unknown to what extent overground walking with a WRE is equivalent to natural overground walking without a WRE. Hence, the interpretability of the 10-m (10MWT) and six-minute (6MWT) walk tests during overground walking with a WRE against reference values collected during natural overground walking without a WRE is challenging. This study aimed to 1) compare walking performance across three different overground walking conditions: natural walking without a WRE, walking with a WRE providing minimal assistance (active walking), and walking with a WRE proving complete assistance (passive walking) and 2) assess the association and the agreement between the 10MWT and the 6MWT during passive and active walking with a WRE. Seventeen healthy individuals who underwent basic locomotor training with a WRE performed the 10MWT (preferred and maximal speeds) and the 6MWT under the three conditions. For the 10MWT, the speed progressively and significantly decreased from natural walking without a WRE (preferred: 1.40±0.18m/s; maximal: 2.16±0.19m/s), to active walking with a WRE (preferred: 0.48±0.10m/s; maximal: 0.61±0.14m/s), and to passive walking with a WRE (preferred: 0.38±0.09m/s; maximal: 0.42±0.10m/s). For the 6MWT, total distances decreased from walking without a WRE (609±53.9m), to active walking with a WRE (196.6±42.6m), and to passive walking with a WRE (144.3±33.3m). The 10MWT and 6MWT provide distinct information and can't be used interchangeably to document speed only during active walking with the WRE. Speed and distance drastically decrease during active and, even more so, passive walking with the WRE in comparison to walking without a WRE. Selection of walking tests should depend on the level of assistance provided by the WRE.

Authors

  • Dany H Gagnon
    École de réadaptation, Université de Montréal, QC, Canada; Laboratoire de pathokinésiologie, Centre de recherche Interdisciplinaire en réadaptation du grand Montréal, Institut de réadaptation Gingras-Lindsay-de-Montréal, CIUSSS Centre-Sud-de-l'Île-de-Montréal, Montréal, QC, Canada. Electronic address: dany.gagnon.2@umontreal.ca.
  • Jérémie Da Cunha
    École de réadaptation, Université de Montréal, QC, Canada; Laboratoire de pathokinésiologie, Centre de recherche Interdisciplinaire en réadaptation du grand Montréal, Institut de réadaptation Gingras-Lindsay-de-Montréal, CIUSSS Centre-Sud-de-l'Île-de-Montréal, Montréal, QC, Canada; Laboratoire MOVE (EA6314), Faculté des sciences du sport, Université de Poitiers, Poitiers, France.
  • Mael Boyer-Delestre
    École de réadaptation, Université de Montréal, QC, Canada; Laboratoire de pathokinésiologie, Centre de recherche Interdisciplinaire en réadaptation du grand Montréal, Institut de réadaptation Gingras-Lindsay-de-Montréal, CIUSSS Centre-Sud-de-l'Île-de-Montréal, Montréal, QC, Canada; Laboratoire MOVE (EA6314), Faculté des sciences du sport, Université de Poitiers, Poitiers, France.
  • Laurent Bosquet
    Laboratoire MOVE (EA6314), Faculté des sciences du sport, Université de Poitiers, Poitiers, France.
  • Cyril Duclos
    École de réadaptation, Université de Montréal, QC, Canada; Laboratoire de pathokinésiologie, Centre de recherche Interdisciplinaire en réadaptation du grand Montréal, Institut de réadaptation Gingras-Lindsay-de-Montréal, CIUSSS Centre-Sud-de-l'Île-de-Montréal, Montréal, QC, Canada.