Compensation for Magnetic Disturbances in Motion Estimation to Provide Feedback to Wearable Robotic Systems.
Journal:
IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Published Date:
Dec 1, 2017
Abstract
The direction of the Earth's magnetic field is used as a reference vector to determine the heading in orientation estimation with wearable sensors. However, the magnetic field strength is weak and can be easily disturbed in the vicinity of ferromagnetic materials, which may result in inaccurate estimate of orientation. This paper presents a novel method for estimating and compensating for magnetic disturbances. The compensation algorithm is implemented within a kinematic-based extended Kalman filter and is based on an assessment of the magnetic disturbance and the change of orientation in each time step. The proposed algorithm was experimentally validated by measuring the orientation of a simple mechanical system with three degrees of freedom in an artificially disturbed magnetic field. The results of the experimental evaluation show that an Kalman filter algorithm that incorporates compensating for magnetic disturbances is capable of estimating the orientation with moderate error (the absolute median errors , ) when the Earth's magnetic field is disturbed by magnetic disturbance with a magnitude equal to twice the magnitude of the Earth's own magnetic field in different directions.