Single-view 2D CNNs with fully automatic non-nodule categorization for false positive reduction in pulmonary nodule detection.
Journal:
Computer methods and programs in biomedicine
Published Date:
Aug 31, 2018
Abstract
BACKGROUND AND OBJECTIVE: In pulmonary nodule detection, the first stage, candidate detection, aims to detect suspicious pulmonary nodules. However, detected candidates include many false positives and thus in the following stage, false positive reduction, such false positives are reliably reduced. Note that this task is challenging due to 1) the imbalance between the numbers of nodules and non-nodules and 2) the intra-class diversity of non-nodules. Although techniques using 3D convolutional neural networks (CNNs) have shown promising performance, they suffer from high computational complexity which hinders constructing deep networks. To efficiently address these problems, we propose a novel framework using the ensemble of 2D CNNs using single views, which outperforms existing 3D CNN-based methods.