An Ontology-Based Artificial Intelligence Model for Medicine Side-Effect Prediction: Taking Traditional Chinese Medicine as an Example.

Journal: Computational and mathematical methods in medicine
Published Date:

Abstract

In this work, an ontology-based model for AI-assisted medicine side-effect (SE) prediction is developed, where three main components, including the drug model, the treatment model, and the AI-assisted prediction model, of the proposed model are presented. To validate the proposed model, an ANN structure is established and trained by two hundred forty-two TCM prescriptions. These data are gathered and classified from the most famous ancient TCM book, and more than one thousand SE reports, in which two ontology-based attributions, hot and cold, are introduced to evaluate whether the prescription will cause SE or not. The results preliminarily reveal that it is a relationship between the ontology-based attributions and the corresponding predicted indicator that can be learnt by AI for predicting the SE, which suggests the proposed model has a potential in AI-assisted SE prediction. However, it should be noted that the proposed model highly depends on the sufficient clinic data, and hereby, much deeper exploration is important for enhancing the accuracy of the prediction.

Authors

  • Yuanzhe Yao
    School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.
  • Zeheng Wang
    School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.
  • Liang Li
    School of Psychological and Cognitive Sciences, Peking University, Beijing, 100871, China.
  • Kun Lu
    Faculty of Medicine, Ludwig Maximilian University of Munich, Munich 81377, Germany.
  • Runyu Liu
    School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.
  • Zhiyuan Liu
    State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing, China.
  • Jing Yan
    Department of Neurology, Shanghai Pudong New Area People's Hospital, Shanghai, China.