Translating cancer genomics into precision medicine with artificial intelligence: applications, challenges and future perspectives.

Journal: Human genetics
Published Date:

Abstract

In the field of cancer genomics, the broad availability of genetic information offered by next-generation sequencing technologies and rapid growth in biomedical publication has led to the advent of the big-data era. Integration of artificial intelligence (AI) approaches such as machine learning, deep learning, and natural language processing (NLP) to tackle the challenges of scalability and high dimensionality of data and to transform big data into clinically actionable knowledge is expanding and becoming the foundation of precision medicine. In this paper, we review the current status and future directions of AI application in cancer genomics within the context of workflows to integrate genomic analysis for precision cancer care. The existing solutions of AI and their limitations in cancer genetic testing and diagnostics such as variant calling and interpretation are critically analyzed. Publicly available tools or algorithms for key NLP technologies in the literature mining for evidence-based clinical recommendations are reviewed and compared. In addition, the present paper highlights the challenges to AI adoption in digital healthcare with regard to data requirements, algorithmic transparency, reproducibility, and real-world assessment, and discusses the importance of preparing patients and physicians for modern digitized healthcare. We believe that AI will remain the main driver to healthcare transformation toward precision medicine, yet the unprecedented challenges posed should be addressed to ensure safety and beneficial impact to healthcare.

Authors

  • Jia Xu
    Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P.R. China.
  • Pengwei Yang
    IBM Watson Health, Cambridge, MA, USA.
  • Shang Xue
    IBM Watson Health, Cambridge, MA, USA.
  • Bhuvan Sharma
    IBM Watson Health, Cambridge, MA, USA.
  • Marta Sanchez-Martin
    IBM Watson Health, Cambridge, MA, USA.
  • Fang Wang
    Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan, China.
  • Kirk A Beaty
    IBM Watson Health, Cambridge, MA, USA.
  • Elinor Dehan
    IBM Watson Health, Cambridge, MA, USA.
  • Baiju Parikh
    IBM Watson Health, Cambridge, MA, USA.