Fast fully automatic heart fat segmentation in computed tomography datasets.

Journal: Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Published Date:

Abstract

Heart diseases affect a large part of the world's population. Studies have shown that these diseases are related to cardiac fat. Various medical diagnostic aid systems are developed to reduce these diseases. In this context, this paper presents a new approach to the segmentation of cardiac fat from Computed Tomography (CT) images. The study employs a clustering algorithm called Floor of Log (FoL). The advantage of this method is the significant drop in segmentation time. Support Vector Machine was used to learn the best FoL algorithm parameter as well as mathematical morphology techniques for noise removal. The time to segment cardiac fat on a CT is only 2.01 s on average. In contrast, literature works require more than one hour to perform segmentation. Therefore, this job is one of the fastest to segment an exam completely. The value of the Accuracy metric was 93.45% and Specificity of 95.52%. The proposed approach is automatic and requires less computational effort. With these results, the use of this approach for the segmentation of cardiac fat proves to be efficient, besides having good application times. Therefore, it has the potential to be a medical diagnostic aid tool. Consequently, it is possible to help experts achieve faster and more accurate results.

Authors

  • Victor Hugo C de Albuquerque
    Programa de Pós Graduação em Informática Aplicada, Laboratório de Bioinformática, Universidade de Fortaleza, Fortaleza, CE, Brazil.
  • Douglas de A Rodrigues
    Programa de Pós-Graduação em Engenharia de Teleinformática - Universidade Federal do Ceará, Fortaleza-CE, Brazil; Laboratório de Processamento de Imagens, Sinais e Computação Aplicada (LAPISCO), Instituto Federal do Ceará, Fortaleza-CE, Brazil. Electronic address: douglas@lapisco.ifce.edu.br.
  • Roberto F Ivo
    Programa de Pós-Graduação em Engenharia de Teleinformática - Universidade Federal do Ceará, Fortaleza-CE, Brazil; Laboratório de Processamento de Imagens, Sinais e Computação Aplicada (LAPISCO), Instituto Federal do Ceará, Fortaleza-CE, Brazil. Electronic address: robertoivo@lapisco.ifce.edu.br.
  • Solon A Peixoto
    Programa de Pós-Graduação em Engenharia de Teleinformática - Universidade Federal do Ceará, Fortaleza-CE, Brazil; Laboratório de Processamento de Imagens, Sinais e Computação Aplicada (LAPISCO), Instituto Federal do Ceará, Fortaleza-CE, Brazil. Electronic address: solon.alves@lapisco.ifce.edu.br.
  • Tao Han
    Food Science and Engineering College, Beijing University of Agriculture, Beijing, 102206, China.
  • Wanqing Wu
    School of Biomedical Engineering, Sun Yat-Sen University, Guanzhou 510275, PR China. Electronic address: wuwanqing@mail.sysu.edu.cn.
  • Pedro P Rebouças Filho
    Programa de Pós-Graduação em Engenharia de Teleinformática - Universidade Federal do Ceará, Fortaleza-CE, Brazil; Laboratório de Processamento de Imagens, Sinais e Computação Aplicada (LAPISCO), Instituto Federal do Ceará, Fortaleza-CE, Brazil. Electronic address: pedrosarf@ifce.edu.br.