A Bayesian classification model for discriminating common infectious diseases in Zhejiang province, China.

Journal: Medicine
Published Date:

Abstract

To develop a classification model for accurately discriminating common infectious diseases in Zhejiang province, China.Symptoms and signs, abnormal lab test results, epidemiological features, as well as the incidence rates were treated as predictors, and were collected from the published literature and a national surveillance system of infectious disease. A classification model was established using naïve Bayesian classifier. Dataset from historical outbreaks was applied for model validation, while sensitivity, specificity, accuracy, area under the receiver operating characteristic curve (AUC) and M-index were presented.A total of 146 predictors were included in the classification model, for discriminating 25 common infectious diseases. The sensitivity ranged from 44.44% for hepatitis E to 96.67% for measles. The specificity varied from 96.36% for dengue fever to 100% for 5 diseases. The median of total accuracy was 97.41% (range: 93.85%-99.04%). The AUCs exceeded 0.98 in 11 of 12 diseases, except in dengue fever (0.613). The M-index was 0.960 (95%CI 0.941-0.978).A novel classification model was constructed based on Bayesian approach to discriminate common infectious diseases in Zhejiang province, China. After entering symptoms and signs, abnormal lab test results, epidemiological features and city of disease origin, an output list of possible diseases ranked according to the calculated probabilities can be provided. The discrimination performance was reasonably good, making it useful in epidemiological applications.

Authors

  • Fudong Li
    Zhejiang Provincial Center for Disease Control and Prevention.
  • Yi Shen
    Department of Oral Maxillofacial-Head Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China. Electronic address: shenyi_777@126.com.
  • Duo Lv
    The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.
  • Junfen Lin
    Zhejiang Provincial Center for Disease Control and Prevention.
  • Biyao Liu
    Zhejiang Provincial Center for Disease Control and Prevention.
  • Fan He
    Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
  • Zhen Wang
    Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China.