Deep-Learning Generated Synthetic Double Inversion Recovery Images Improve Multiple Sclerosis Lesion Detection.

Journal: Investigative radiology
Published Date:

Abstract

OBJECTIVES: The aim of the study was to implement a deep-learning tool to produce synthetic double inversion recovery (synthDIR) images and compare their diagnostic performance to conventional sequences in patients with multiple sclerosis (MS).

Authors

  • Tom Finck
    From the Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich.
  • Hongwei Li
    Department of Informatics, Technische Universität München, Munich, Germany.
  • Lioba Grundl
    From the Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich.
  • Paul Eichinger
    Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany. Electronic address: Paul.Eichinger@tum.de.
  • Matthias Bussas
  • Mark Mühlau
    Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany; TUM-NIC, NeuroImaging Center, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany.
  • Bjoern Menze
  • Benedikt Wiestler
    Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Germany.