Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process.

Journal: International journal of neural systems
Published Date:

Abstract

In the context of neuro-pathological disorders, neuroimaging has been widely accepted as a clinical tool for diagnosing patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI). The advanced deep learning method, a novel brain imaging technique, was applied in this study to evaluate its contribution to improving the diagnostic accuracy of AD. Three-dimensional convolutional neural networks (3D-CNNs) were applied with magnetic resonance imaging (MRI) to execute binary and ternary disease classification models. The dataset from the Alzheimer's disease neuroimaging initiative (ADNI) was used to compare the deep learning performances across 3D-CNN, 3D-CNN-support vector machine (SVM) and two-dimensional (2D)-CNN models. The outcomes of accuracy with ternary classification for 2D-CNN, 3D-CNN and 3D-CNN-SVM were [Formula: see text]%, [Formula: see text]% and [Formula: see text]% respectively. The 3D-CNN-SVM yielded a ternary classification accuracy of 93.71%, 96.82% and 96.73% for NC, MCI and AD diagnoses, respectively. Furthermore, 3D-CNN-SVM showed the best performance for binary classification. Our study indicated that 'NC versus MCI' showed accuracy, sensitivity and specificity of 98.90%, 98.90% and 98.80%; 'NC versus AD' showed accuracy, sensitivity and specificity of 99.10%, 99.80% and 98.40%; and 'MCI versus AD' showed accuracy, sensitivity and specificity of 89.40%, 86.70% and 84.00%, respectively. This study clearly demonstrates that 3D-CNN-SVM yields better performance with MRI compared to currently utilized deep learning methods. In addition, 3D-CNN-SVM proved to be efficient without having to manually perform any prior feature extraction and is totally independent of the variability of imaging protocols and scanners. This suggests that it can potentially be exploited by untrained operators and extended to virtual patient imaging data. Furthermore, owing to the safety, noninvasiveness and nonirradiative properties of the MRI modality, 3D-CNN-SMV may serve as an effective screening option for AD in the general population. This study holds value in distinguishing AD and MCI subjects from normal controls and to improve value-based care of patients in clinical practice.

Authors

  • Wei Feng
    Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, You'anmenwai, Xitoutiao No.10, Beijing, P. R. China.
  • Nicholas Van Halm-Lutterodt
    Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China.
  • Hao Tang
    Department of Urology, Eastern Theater General Hospital of Chinese People's Liberation Army, Nanjing, Jiangsu 210000, China.
  • Andrew Mecum
    Department of Psychology, Emory University, Atlanta, GA, USA.
  • Mohamed Kamal Mesregah
    Department of Orthopaedics and Neurosurgery, Keck Medical Center of USC, Los Angeles, CA, USA.
  • Yuan Ma
    School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069.
  • Haibin Li
    School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China.
  • Feng Zhang
    Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China. Electronic address: fengzhang@126.com.
  • Zhiyuan Wu
    Pediatric Intensive Care Units, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
  • Erlin Yao
    School of Computer Science and Technology, University of the Chinese Academy of Sciences, Beijing, P. R. China.
  • Xiuhua Guo
    School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069. Electronic address: statguo@ccmu.edu.cn.