AI-driven attenuation correction for brain PET/MRI: Clinical evaluation of a dementia cohort and importance of the training group size.
Journal:
NeuroImage
Published Date:
Aug 1, 2020
Abstract
INTRODUCTION: Robust and reliable attenuation correction (AC) is a prerequisite for accurate quantification of activity concentration. In combined PET/MRI, AC is challenged by the lack of bone signal in the MRI from which the AC maps has to be derived. Deep learning-based image-to-image translation networks present itself as an optimal solution for MRI-derived AC (MR-AC). High robustness and generalizability of these networks are expected to be achieved through large training cohorts. In this study, we implemented an MR-AC method based on deep learning, and investigated how training cohort size, transfer learning, and MR input affected robustness, and subsequently evaluated the method in a clinical setup, with the overall aim to explore if this method could be implemented in clinical routine for PET/MRI examinations.