Artificial intelligence in cardiac radiology.

Journal: La Radiologia medica
Published Date:

Abstract

Artificial intelligence (AI) is entering the clinical arena, and in the early stage, its implementation will be focused on the automatization tasks, improving diagnostic accuracy and reducing reading time. Many studies investigate the potential role of AI to support cardiac radiologist in their day-to-day tasks, assisting in segmentation, quantification, and reporting tasks. In addition, AI algorithms can be also utilized to optimize image reconstruction and image quality. Since these algorithms will play an important role in the field of cardiac radiology, it is increasingly important for radiologists to be familiar with the potential applications of AI. The main focus of this article is to provide an overview of cardiac-related AI applications for CT and MRI studies, as well as non-imaging-based applications for reporting and image optimization.

Authors

  • Marly van Assen
    Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Dr, Charleston, SC 29425-2260 (S.S.M., D.M., M.v.A., C.N.D.C., R.R.B., C.T., A.V.S., A.M.F., B.E.J., L.P.G., U.J.S.); Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany (S.S.M., T.J.V.); Stanford University School of Medicine, Department of Radiology, Stanford, Calif (D.M.); Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (C.N.D.C.); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (R.R.B.); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich, Germany (C.T.); Department of Cardiology, Munich University Clinic, Ludwig-Maximilians-University, Munich, Germany (C.T.); Siemens Medical Solutions USA, Malvern, Pa (P.S.); and Department of Emergency Medicine, Medical University of South Carolina, Charleston, SC (A.J.M.).
  • Giuseppe Muscogiuri
    Clinical Cardiology Unit and Department of Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy.
  • Damiano Caruso
    Department of Radiological Sciences, Oncology and Pathology, University La Sapienza, AOU Sant'Andrea, Via di Grottarossa 1035, 00189 Rome, Italy.
  • Scott J Lee
    Division of Cardiothoracic Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital | Emory Healthcare, Inc., Atlanta, GA, USA.
  • Andrea Laghi
    Department of Radiological Sciences, Oncology and Pathology, University La Sapienza, AOU Sant'Andrea, Via di Grottarossa 1035, 00189 Rome, Italy.
  • Carlo N De Cecco
    Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Dr, Charleston, SC 29425-2260 (S.S.M., D.M., M.v.A., C.N.D.C., R.R.B., C.T., A.V.S., A.M.F., B.E.J., L.P.G., U.J.S.); Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany (S.S.M., T.J.V.); Stanford University School of Medicine, Department of Radiology, Stanford, Calif (D.M.); Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (C.N.D.C.); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (R.R.B.); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich, Germany (C.T.); Department of Cardiology, Munich University Clinic, Ludwig-Maximilians-University, Munich, Germany (C.T.); Siemens Medical Solutions USA, Malvern, Pa (P.S.); and Department of Emergency Medicine, Medical University of South Carolina, Charleston, SC (A.J.M.).