Identifying normal mammograms in a large screening population using artificial intelligence.

Journal: European radiology
Published Date:

Abstract

OBJECTIVES: To evaluate the potential of artificial intelligence (AI) to identify normal mammograms in a screening population.

Authors

  • Kristina Lång
    Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092, Zürich, Switzerland.
  • Magnus Dustler
    Department of Translational Medicine, Diagnostic Radiology, Lund University, Malmö, Sweden.
  • Victor Dahlblom
    Diagnostic Radiology, Department of Translational Medicine, Lund University, Inga Maria Nilssons gata 47, SE-20502, Malmö, Sweden.
  • Anna Åkesson
    Clinical Studies Sweden - Forum South, Skåne University Hospital, Lund, Sweden.
  • Ingvar Andersson
    Unilabs Breast Center, Skåne University Hospital, Jan Waldenströms gata 22, SE-20502, Malmö, Sweden.
  • Sophia Zackrisson
    Department of Translational Medicine, Diagnostic Radiology, Lund University, Malmö, Sweden.